# 6.2: Addition and Subtraction of Rational Numbers

Definition: If  $\frac{a}{b}$  and  $\frac{c}{b}$  are rational numbers, then  $\frac{a}{b}+\frac{c}{b}=\frac{a+c}{b}$  .

Example: Draw a figure and a number line to represent  $\frac{1}{4} + \frac{2}{4} = \frac{3}{4}$ .



Example: Find a method of evaluating  $\frac{1}{3} + \frac{1}{4}$ .

1

Theorem: If  $\frac{a}{b}$  and  $\frac{c}{d}$  are any two rational numbers, then  $\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}$  .

(Note: In practice, we usually find the least common denominator instead of just using this formula.)

Proof:

Example: Calculate the following sums. Simplify your answers.

(a) 
$$\frac{3}{10} + \frac{4}{15}$$

(b) 
$$\frac{3}{9} + \frac{2}{6}$$

Definition: A<u>mixed number</u> is a number of the form  $a\frac{b}{c}$ , where a is an integer and  $\frac{b}{c}$  is a proper fraction. The notation means  $a\frac{b}{c}=a+\frac{b}{c}$ . A mixed number is a rational number, so we should be able to write it as  $\frac{a}{b}$ . Example: Write the following numbers in the  $\frac{a}{b}$  form.

- (a)  $2\frac{1}{4}$
- (b)  $-3\frac{2}{5}$

Example: Change the following fractions to mixed numbers.

(a)  $\frac{22}{7}$ 

(b)  $\frac{64}{19}$ 

Example: Calculate the following sums. Leave your answers as mixed numbers.

(a)  $2\frac{3}{7} + 1\frac{11}{14}$ 

(b)  $2\frac{1}{2} + 3\frac{2}{3}$ 

Which of our number properties are represented in the rational numbers over addition?

Closure:

Commutative:

Associative:

Identity:

Inverse:

Definition: If  $\frac{a}{b}$  and  $\frac{c}{d}$  are rational numbers, then  $\frac{a}{b} = \frac{c}{d}$  is the unique rational number  $\frac{e}{f}$  such that  $\frac{a}{b} = \frac{c}{d} + \frac{e}{f}$ .

Note: An easy formula that we can get from this is  $\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$ .

Example: Draw a figure to represent  $\frac{5}{6}-\frac{2}{6}=\frac{3}{6}$  .



Theorem: If  $\frac{a}{b}$  and  $\frac{c}{d}$  are any two rational numbers, then  $\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$ .

(Note: In practice, we usually find the least common denominator instead of just using this formula.)

Proof:

Example: Calculate the following. Simplify your answer.

(a) 
$$\frac{3}{5} = \frac{1}{4}$$

(b) 
$$\frac{13}{16} - \frac{7}{30}$$

Example: Calculate the following. Simplify your answer.

(a) 
$$2\frac{1}{6} - 1\frac{9}{20}$$

(b) 
$$3\frac{1}{2} - 1\frac{5}{8}$$